KABOOM! MUSIC
KABOOM! TV
-
Recent Posts
Recent Comments
- Kaboom! Bombshell of the Day! (2/1/18): Model Jacinta Donelle on
- Kaboom! Bombshell of the Day! (7/9/18): Model Kim Lu on
- KABOOM! BOMBSHELL OF THE DAY! (12/23/12): MODEL PRINCESS JAVEL on
- Kaboom! Bombshell of the Day! (5/26/18): Model Shanae Drapp on
- Kaboom! Bombshell of the Day! (5/26/18): Model Shanae Drapp on
Blogroll
Categories
- Auto
- Bombshell Of The Day
- Business
- Bust-A-Move
- Comedy
- Comics
- Cover Me
- Crazy 8's
- Dance
- Editorial
- Events
- Exclusives
- Fashion
- Film
- Fittin' In
- Food
- Gaming
- KICKIN' IT
- Miserable Mondays
- Models
- Music
- News
- NICE WHIPS
- Opinion
- Picture Perfect
- Review
- Sex
- Sports
- Star Warz
- Tech
- That's The Way Love Goes
- Top 10 People of the Week
- TV
- uncategorized
- Who's Who of 2013
- Who's Who of 2014
- Who's Who of 2015
- Who's Who of 2016
- Who's Who of 2018
- Who’s Who of 2017
Archives
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- August 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018
- January 2018
- December 2017
- November 2017
- October 2017
- September 2017
- August 2017
- July 2017
- June 2017
- May 2017
- April 2017
- March 2017
- February 2017
- January 2017
- December 2016
- November 2016
- October 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- March 2016
- February 2016
- January 2016
- December 2015
- November 2015
- October 2015
- September 2015
- August 2015
- July 2015
- June 2015
- May 2015
- April 2015
- March 2015
- February 2015
- January 2015
- December 2014
- November 2014
- October 2014
- September 2014
- August 2014
- July 2014
- June 2014
- May 2014
- April 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- March 2013
- February 2013
- January 2013
- December 2012
MIT Robot Learns How to Play Jenga
In the basement of MIT’s Building 3, a robot is carefully contemplating its next move. It gently pokes at a tower of blocks, looking for the best block to extract without toppling the tower, in a solitary, slow-moving, yet surprisingly agile game of Jenga.
The robot, developed by MIT engineers, is equipped with a soft-pronged gripper, a force-sensing wrist cuff, and an external camera, all of which it uses to see and feel the tower and its individual blocks.
As the robot carefully pushes against a block, a computer takes in visual and tactile feedback from its camera and cuff, and compares these measurements to moves that the robot previously made. It also considers the outcomes of those moves — specifically, whether a block, in a certain configuration and pushed with a certain amount of force, was successfully extracted or not. In real-time, the robot then “learns” whether to keep pushing or move to a new block, in order to keep the tower from falling.
Details of the Jenga-playing robot are published today in the journal Science Robotics. Alberto Rodriguez, the Walter Henry Gale Career Development Assistant Professor in the Department of Mechanical Engineering at MIT, says the robot demonstrates something that’s been tricky to attain in previous systems: the ability to quickly learn the best way to carry out a task, not just from visual cues, as it is commonly studied today, but also from tactile, physical interactions.
“Unlike in more purely cognitive tasks or games such as chess or Go, playing the game of Jenga also requires mastery of physical skills such as probing, pushing, pulling, placing, and aligning pieces. It requires interactive perception and manipulation, where you have to go and touch the tower to learn how and when to move blocks,” Rodriguez says. “This is very difficult to simulate, so the robot has to learn in the real world, by interacting with the real Jenga tower. The key challenge is to learn from a relatively small number of experiments by exploiting common sense about objects and physics.”
He says the tactile learning system the researchers have developed can be used in applications beyond Jenga, especially in tasks that need careful physical interaction, including separating recyclable objects from landfill trash and assembling consumer products.
“In a cellphone assembly line, in almost every single step, the feeling of a snap-fit, or a threaded screw, is coming from force and touch rather than vision,” Rodriguez says. “Learning models for those actions is prime real-estate for this kind of technology.”
The paper’s lead author is MIT graduate student Nima Fazeli. The team also includes Miquel Oller, Jiajun Wu, Zheng Wu, and Joshua Tenenbaum, professor of brain and cognitive sciences at MIT.